CodeSnippet.Cn
代码片段
Csharp
架构设计
.NetCore
西班牙语
kubernetes
MySql
Redis
Algorithm
Ubuntu
Linux
Other
.NetMvc
VisualStudio
Git
pm
Python
WPF
java
Plug-In
分布式
CSS
微服务架构
JavaScript
DataStructure
Shared
通俗易懂,什么是.NET?什么是.NET Framework?什么是.NET Core?(六)
0
.NetCore
Csharp
小笨蛋
发布于:2021年04月05日
更新于:2021年04月05日
158
#custom-toc-container
**[通俗易懂,什么是.NET?什么是.NET Framework?什么是.NET Core?(一)](https://www.codesnippet.cn/home/list/16 "通俗易懂,什么是.NET?什么是.NET Framework?什么是.NET Core?(一)")** **[通俗易懂,什么是.NET?什么是.NET Framework?什么是.NET Core?(二)](https://www.codesnippet.cn/home/list/17 "通俗易懂,什么是.NET?什么是.NET Framework?什么是.NET Core?(二)")** **[通俗易懂,什么是.NET?什么是.NET Framework?什么是.NET Core?(三)](https://www.codesnippet.cn/home/list/18 "通俗易懂,什么是.NET?什么是.NET Framework?什么是.NET Core?(三)")** **[通俗易懂,什么是.NET?什么是.NET Framework?什么是.NET Core?(四)](https://www.codesnippet.cn/home/list/19 "通俗易懂,什么是.NET?什么是.NET Framework?什么是.NET Core?(四)")** **[通俗易懂,什么是.NET?什么是.NET Framework?什么是.NET Core?(五)](https://www.codesnippet.cn/home/list/20 "通俗易懂,什么是.NET?什么是.NET Framework?什么是.NET Core?(五)")** ### 应用程序域 传统非托管程序是直接承载在Windows进程中,托管程序是承载在.NET虚拟机CLR上的,而在CLR中管控的这部分资源中,被分成了一个个逻辑上的分区,这个逻辑分区被称为应用程序域,是.NET Framework中定义的一个概念。 因为堆内存的构建和删除都通过GC去托管,降低了人为出错的几率,在此特性基础上.NET强调在一个进程中通过CLR强大的管理建立起对资源逻辑上的隔离区域,每个区域的应用程序互不影响,从而让托管代码程序的安全性和健壮性得到了提升。 熟悉程序集加载规则和AppDomain是在.NET技术下进行插件编程的前提。AppDomain这部分概念并不复杂。 当启动一个托管程序时,最先启动的是CLR,在这过程中会通过代码初始化三个逻辑区域,最先是SystemDomain系统程序域,然后是SharedDoamin共享域,最后是{程序集名称}Domain默认域。 系统程序域里维持着一些系统构建项,我们可以通过这些项来监控并管理其它应用程序域等。共享域存放着其它域都会访问到的一些信息,当共享域初始化完毕后,会自动加载mscorlib.dll程序集至该共享域。而默认域则用储存自身程序集的信息,我们的主程序集就会被加载至这个默认域中,执行程序入口方法,在没有特殊动作外所产生的一切耗费都发生在该域。 我们可以在代码中创建和卸载应用程序域,域与域之间有隔离性,挂掉A域不会影响到B域,并且对于每一个加载的程序集都要指定域的,没有在代码中指定域的话,默认都是加载至默认域中。 AppDomain可以想象成组的概念,AppDomain包含了我们加载的一组程序集。我们通过代码卸载AppDomain,即同时卸载了该AppDomain中所加载的所有程序集在内存中的相关区域。 AppDomain的初衷是边缘隔离,它可以让程序不重新启动而长时间运行,围绕着该概念建立的体系从而让我们能够使用.NET技术进行插件编程。 当我们想让程序在不关闭不重新部署的情况下添加一个新的功能或者改变某一块功能,我们可以这样做:将程序的主模块仍默认加载至默认域,再创建一个新的应用程序域,然后将需要更改或替换的模块的程序集加载至该域,每当更改和替换的时候直接卸载该域即可。 而因为域的隔离性,我在A域和B域加载同一个程序集,那么A域和B域就会各存在内存地址不同但数据相同的程序集数据。 #### 跨边界访问 事实上,在开发中我们还应该注意跨域访问对象的操作(即在A域中的程序集代码直接调用B域中的对象)是与平常编程中有所不同的,一个域中的应用程序不能直接访问另一个域中的代码和数据,对于这样的在进程内跨域访问操作分两类。 一是按引用封送,需要继承System.MarshalByRefObject,传递的是该对象的代理引用,与源域有相同的生命周期。 二是按值封送,需要被[Serializable]标记,是通过序列化传递的副本,副本与源域的对象无关。 无论哪种方式都涉及到两个域直接的封送、解封,所以跨域访问调用不适用于过高频率。 (比如,原来你是这样调用对象: var user=new User(); 现在你要这样:var user=(User){应用程序域对象实例}.CreateInstanceFromAndUnwrap("Model.dll","Model.User"); ) 值得注意的是,应用程序域是对程序集的组的划分,它与进程中的线程是两个一横一竖,方向不一样的概念,不应该将这2个概念放在一起比较。我们可以通过Thread.GetDomain来查看执行线程所在的域。 应用程序域在类库中是System.AppDomain类,部分重要的成员有: ```csharp 获取当前 System.Threading.Thread 的当前应用程序域 public static AppDomain CurrentDomain { get; } 使用指定的名称新建应用程序域 public static AppDomain CreateDomain(string friendlyName); 卸载指定的应用程序域。 public static void Unload(AppDomain domain); 指示是否对当前进程启用应用程序域的 CPU 和内存监视,开启后可以根据相关属性进行监控 public static bool MonitoringIsEnabled { get; set; } 当前域托管代码抛出异常时最先发生的一个事件,框架设计中可以用到 public event EventHandler
FirstChanceException; 当某个异常未被捕获时调用该事件,如代码里只catch了a异常,实际产生的是 b异常,那么b异常就没有捕捉到。 public event UnhandledExceptionEventHandler UnhandledException; 为指定的应用程序域属性分配指定值。该应用程序域的局部存储值,该存储不划分上下文和线程,均可通过GetData获取。 public void SetData(string name, object data); 如果想使用托管代码来覆盖CLR的默认行为https://msdn.microsoft.com/zh-cn/library/system.appdomainmanager(v=vs.85).aspx public AppDomainManager DomainManager { get; } 返回域的配置信息,如在config中配置的节点信息 public AppDomainSetup SetupInformation { get; } ``` 应用程序域: https://docs.microsoft.com/zh-cn/dotnet/framework/app-domains/application-domains #### AppDomain和AppPool 注意:此处的AppDomain应用程序域 和 IIS中的AppPool应用程序池 是2个概念,AppPool是IIS独有的概念,它也相当于一个组的概念,对网站进行划组,然后对组进行一些如进程模型、CPU、内存、请求队列的高级配置。 ### 内存 应用程序域把资源给隔离开,这个资源,主要指内存。那么什么是内存呢? 要知道,程序运行的过程就是电脑不断通过CPU进行计算的过程,这个过程需要读取并产生运算的数据,为此我们需要一个拥有足够容量能够快速与CPU交互的存储容器,这就是内存了。对于内存大小,32位处理器,寻址空间最大为2的32次方byte,也就是4G内存,除去操作系统所占用的公有部分,进程大概能占用2G内存,而如果是64位处理器,则是8T。 而在.NET中,内存区域分为堆栈和托管堆。 #### 堆栈和堆的区别 堆和堆栈就内存而言只不过是地址范围的区别。不过堆栈的数据结构和其存储定义让其在时间和空间上都紧密的存储,这样能带来更高的内存密度,能在CPU缓存和分页系统表现的更好。故而访问堆栈的速度总体来说比访问堆要快点。 #### 线程堆栈 操作系统会为每条线程分配一定的空间,Windwos为1M,这称之为线程堆栈。在CLR中的栈主要用来执行线程方法时,保存临时的局部变量和函数所需的参数及返回的值等,在栈上的成员不受GC管理器的控制,它们由操作系统负责分配,当线程走出方法后,该栈上成员采用后进先出的顺序由操作系统负责释放,执行效率高。 而托管堆则没有固定容量限制,它取决于操作系统允许进程分配的内存大小和程序本身对内存的使用情况,托管堆主要用来存放对象实例,不需要我们人工去分配和释放,其由GC管理器托管。 #### 为什么值类型存储在栈上 不同的类型拥有不同的编译时规则和运行时内存分配行为,我们应知道,C# 是一种强类型语言,每个变量和常量都有一个类型,在.NET中,每种类型又被定义为值类型或引用类型。 使用 struct、enum 关键字直接派生于System.ValueType定义的类型是值类型,使用 class、interface、delagate 关键字派生于System.Object定义的类型是引用类型。 对于在一个方法中产生的值类型成员,将其值分配在栈中。这样做的原因是因为值类型的值其占用固定内存的大小。 C#中int关键字对应BCL中的Int32,short对应Int16。Int32为2的32位,如果把32个二进制数排列开来,我们要求既能表达正数也能表达负数,所以得需要其中1位来表达正负,首位是0则为+,首位是1则为-,那么我们能表示数据的数就只有31位了,而0是介于-1和1之间的整数,所以对应的Int32能表现的就是2的31次方到2的31次方-1,即2147483647和-2147483648这个整数段。 1个字节=8位,32位就是4个字节,像这种以Int32为代表的值类型,本身就是固定的内存占用大小,所以将值类型放在内存连续分配的栈中。 #### 托管堆模型 而引用类型相比值类型就有点特殊,newobj创建一个引用类型,因其类型内的引用对象可以指向任何类型,故而无法准确得知其固定大小,所以像对于引用类型这种无法预知的容易产生内存碎片的动态内存,我们把它放到托管堆中存储。 托管堆由GC托管,其分配的核心在于堆中维护着一个nextObjPtr指针,我们每次实例(new)一个对象的时候,CLR将对象存入堆中,并在栈中存放该对象的起始地址,然后该指针都会根据该对象的大小来计算下一个对象的起始地址。不同于值类型直接在栈中存放值,引用类型则还需要在栈中存放一个代表(指向)堆中对象的值(地址)。 而托管堆又可以因存储规则的不同将其分类,托管堆可以被分为3类: - 1.用于托管对象实例化的垃圾回收堆,又以存储对象大小分为小对象(<85000byte)的GC堆(SOH,Small Object Heap)和用于存储大对象实例的(>=85000byte)大对象堆(LOG,Larage Object Heap)。 - 2.用于存储CLR组件和类型系统的加载(Loader)堆,其中又以使用频率分为经常访问的高频堆(里面包含有MethodTables方法表, MeghodDescs方法描述, FieldDescs方法描述和InterfaceMaps接口图),和较低的低频堆,和Stub堆(辅助代码,如JIT编译后修改机器代码指令地址环节)。 - 3.用于存储JIT代码的堆及其它杂项的堆。 加载程序集就是将程序集中的信息给映射在加载堆,对产生的实例对象存放至垃圾回收堆。前文说过应用程序域是指通过CLR管理而建立起的逻辑上的内存边界,那么每个域都有其自己的加载堆,只有卸载应用程序域的时候,才会回收该域对应的加载堆。 而加载堆中的高频堆包含的有一个非常重要的数据结构表---方法表,每个类型都仅有一份方法表(MethodTables),它是对象的第一个实例创建前的类加载活动的结果,它主要包含了我们所关注的3部分信息: - 1.包含指向EEClass的一个指针。EEClass是一个非常重要的数据结构,当类加载器加载到该类型时会从元数据中创建出EEClass,EEClass里主要存放着与类型相关的表达信息。 - 2.包含指向各自方法的方法描述器(MethodDesc)的指针逻辑组成的线性表信息:继承的虚函数, 新虚函数, 实例方法, 静态方法。 - 3.包含指向静态字段的指针。 那么,实例一个对象,CLR是如何将该对象所对应的类型行为及信息的内存位置(加载堆)关联起来的呢? 原来,在托管堆上的每个对象都有2个额外的供于CLR使用的成员,我们是访问不到的,其中一个就是类型对象指针,它指向位于加载堆中的方法表从而让类型的状态和行为关联了起来, 类型指针的这部分概念我们可以想象成obj.GetType()方法获得的运行时对象类型的实例。而另一个成员就是同步块索引,其主要用于2点:1.关联内置SyncBlock数组的项从而完成互斥锁等目的。 2.是对象Hash值计算的输入参数之一。 ![](/uploads/images/20210605/151500-ee07f7700d7b4548b9db51eda1729b21.gif) 上述gif是我简单画的一个图,可以看到对于方法中申明的值类型变量,其在栈中作为一块值表示,我们可以直接通过c#运算符sizeof来获得值类型所占byte大小。而方法中申明的引用类型变量,其在托管堆中存放着对象实例(对象实例至少会包含上述两个固定成员以及实例数据,可能),在栈中存放着指向该实例的地址。 当我new一个引用对象的时候,会先分配同步块索引(也叫对象头字节),然后是类型指针,最后是类型实例数据(静态字段的指针存在于方法表中)。会先分配对象的字段成员,然后分配对象父类的字段成员,接着再执行父类的构造函数,最后才是本对象的构造函数。这个多态的过程,对于CLR来说就是一系列指令的集合,所以不能纠结new一个子类对象是否会也会new一个父类对象这样的问题。而也正是因为引用类型的这样一个特征,我们虽然可以估计一个实例大概占用多少内存,但对于具体占用的大小,我们需要专门的工具来测量。 对于引用类型,u2=u1,我们在赋值的时候,实际上赋的是地址,那么我改动数据实际上是改动该地址指向的数据,这样一来,因为u2和u1都指向同一块区域,所以我对u1的改动会影响到u2,对u2的改动会影响到u1。如果我想互不影响,那么我可以继承IClone接口来实现内存克隆,已有的CLR实现是浅克隆方法,但也只能克隆值类型和String(string是个特殊的引用类型,对于string的更改,其会产生一个新实例对象),如果对包含其它引用类型的这部分,我们可以自己通过其它手段实现深克隆,如序列化、反射等方式来完成。而如果引用类型中包含有值类型字段,那么该字段仍然分配在堆上。 对于值类型,a=b,我们在赋值的时候,实际上是新建了个值,那么我改动a的值那就只会改动a的值,改动b的值就只会改动b的值。而如果值类型(如struct)中包含的有引用类型,那么仍是同样的规则,引用类型的那部分实例在托管堆中,地址在栈上。 我如果将值类型放到引用类型中(如:object a=3),会在栈中生成一个地址,在堆中生成该值类型的值对象,还会再生成这类型指针和同步块索引两个字段,这也就是常说装箱,反过来就是拆箱。每一次的这样的操作,都会涉及到内存的分布、拷贝,可见,装箱和拆箱是有性能损耗,因此应该减少值类型和引用类型之间转换的次数。 但对于引用类型间的子类父类的转换,仅是指令的执行消耗,几尽没有开销。 #### 选class还是struct 那么我到底是该new一个class呢还是选择struct呢? 通过上文知道对于class,用完之后对象仍然存在托管堆,占用内存。对于struct,用完之后直接由操作系统销毁。那么在实际开发中定义类型时,选择class还是struct就需要注意了,要综合应用场景来辨别。struct存在于栈上,栈和托管堆比较,最大的优势就是即用即毁。所以如果我们单纯的传递一个类型,那么选择struct比较合适。但须注意线程堆栈有容量限制,不可多存放超大量的值类型对象,并且因为是值类型直接传递副本,所以struct作为方法参数是线程安全的,但同样要避免装箱的操作。而相比较class,如果类型中还需要多一些封装继承多态的行为,那么class当然是更好的选择。 #### GC管理器 值得注意的是,当我new完一个对象不再使用的时候,这个对象在堆中所占用的内存如何处理? 在非托管世界中,可以通过代码手动进行释放,但在.NET中,堆完全由CLR托管,也就是说GC堆是如何具体来释放的呢? 当GC堆需要进行清理的时候,GC收集器就会通过一定的算法来清理堆中的对象,并且版本不同算法也不同。最主要的则为Mark-Compact标记-压缩算法。 这个算法的大概含义就是,通过一个图的数据结构来收集对象的根,这个根就是引用地址,可以理解为指向托管堆的这根关系线。当触发这个算法时,会检查图中的每个根是否可达,如果可达就对其标记,然后在堆上找到剩余没有标记(也就是不可达)的对象进行删除,这样,那些不在使用的堆中对象就删除了。 前面说了,因为nextObjPtr的缘故,在堆中分配的对象都是连续分配的,因为未被标记而被删除,那么经过删除后的堆就会显得支零破碎,那么为了避免空间碎片化,所以需要一个操作来让堆中的对象再变得紧凑、连续,而这样一个操作就叫做:Compact压缩。 而对堆中的分散的对象进行挪动后,还会修改这些被挪动对象的指向地址,从而得以正确的访问,最后重新更新一下nextObjPtr指针,周而复始。 而为了优化内存结构,减少在图中搜索的成本,GC机制又为每个托管堆对象定义了一个属性,将每个对象分成了3个等级,这个属性就叫做:代,0代、1代、2代。 每当new一个对象的时候,该对象都会被定义为第0代,当GC开始回收的时候,先从0代回收,在这一次回收动作之后,0代中没有被回收的对象则会被定义成第1代。当回收第1代的时候,第1代中没有被清理掉的对象就会被定义到第2代。 CLR初始化时会为0/1/2这三代选择一个预算的容量。0代通常以256 KB-4 MB之间的预算开始,1代的典型起始预算为512 KB-4 MB,2代不受限制,最大可扩展至操作系统进程的整个内存空间。 比如第0代为256K,第1代为2MB。我们不停的new对象,直到这些对象达到256k的时候,GC会进行一次垃圾回收,假设这次回收中回收了156k的不可达对象,剩余100k的对象没有被回收,那么这100k的对象就被定义为第1代。现在就变成了第0代里面什么都没有,第1代里放的有100k的对象。这样周而复始,GC清除的永远都只有第0代对象,除非当第一代中的对象累积达到了定义的2MB的时候,才会连同清理第1代,然后第1代中活着的部分再升级成第二代... 第二代的容量是没有限制,但是它有动态的阈值(因为等到整个内存空间已满以执行垃圾回收是没有意义的),当达到第二代的阈值后会触发一次0/1/2代完整的垃圾收集。 也就是说,代数越长说明这个对象经历了回收的次数也就越多,那么也就意味着该对象是不容易被清除的。 这种分代的思想来将对象分割成新老对象,进而配对不同的清除条件,这种巧妙的思想避免了直接清理整个堆的尴尬。 ![](/uploads/images/20210605/151545-ed4543f3e003473a86b392f6d91da743.gif) #### 弱引用、弱事件 GC收集器会在第0代饱和时开始回收托管堆对象,对于那些已经申明或绑定的不经访问的对象或事件,因为不经常访问而且还占内存(有点懒加载的意思),所以即时对象可达,但我想在GC回收的时候仍然对其回收,当需要用到的时候再创建,这种情况该怎么办? 那么这其中就引入了两个概念: WeakReference弱引用、WeakEventManager弱事件 对于这2两个不区分语言的共同概念,大家可自行扩展百度,此处就不再举例。 #### GC堆回收 那么除了通过new对象而达到代的阈(临界)值时,还有什么能够导致垃圾堆进行垃圾回收呢? 还可能windows报告内存不足、CLR卸载AppDomain、CLR关闭等其它特殊情况。 或者,我们还可以自己通过代码调用。 .NET有GC来帮助开发人员管理内存,并且版本也在不断迭代。GC帮我们托管内存,但仍然提供了System.GC类让开发人员能够轻微的协助管理。 这其中有一个可以清理内存的方法(并没有提供清理某个对象的方法):GC.Collect方法,可以对所有或指定代进行即时垃圾回收(如果想调试,需在release模式下才有效果)。这个方法尽量别用,因为它会扰乱代与代间的秩序,从而让低代的垃圾对象跑到生命周期长的高代中。 GC还提供了,判断当前对象所处代数、判断指定代数经历了多少次垃圾回收、获取已在托管堆中分配的字节数这样的三个方法,我们可以从这3个方法简单的了解托管堆的情况。 托管世界的内存不需要我们打理,我们无法从代码中得知具体的托管对象的大小,你如果想追求对内存最细微的控制,显然C#并不适合你,不过类似于有关内存把控的这部分功能模块,我们可以通过非托管语言来编写,然后通过.NET平台的P/Invoke或COM技术(微软为CLR定义了COM接口并在注册表中注册)来调用。 像FCL中的源码,很多涉及到操作系统的诸如 文件句柄、网络连接等外部extren的底层方法都是非托管语言编写的,对于这些非托管模块所占用的资源,我们可以通过隐式调用析构函数(Finalize)或者显式调用的Dispose方法通过在方法内部写上非托管提供的释放方法来进行释放。 像文中示例的socket就将释放资源的方法写入Dispose中,析构函数和Close方法均调用Dispose方法以此完成释放。事实上,在FCL中的使用了非托管资源的类大多都遵循IDispose模式。而如果你没有释放非托管资源直接退出程序,那么操作系统会帮你释放该程序所占的内存的。 #### 垃圾回收对性能的影响 还有一点,垃圾回收是对性能有影响的。 GC虽然有很多优化策略,但总之,只要当它开始回收垃圾的时候,为了防止线程在CLR检查期间对对象更改状态,所以CLR会暂停进程中的几乎所有线程(所以线程太多也会影响GC时间),而暂停的时间就是应用程序卡死的时间,为此,对于具体的处理细节,GC提供了2种配置模式让我们选择。 第一种为:单CPU的工作站模式,专为单CPU处理器定做。这种模式会采用一系列策略来尽可能减少GC回收中的暂停时间。 而工作站模式又分为并发(或后台)与不并发两种,并发模式表现为响应时间快速,不并发模式表现为高吞吐量。 第二种为:多CPU的服务器模式,它会为每个CPU都运行一个GC回收线程,通过并行算法来使线程能真正同时工作,从而获得性能的提升。 我们可以通过在Config文件中更改配置来修改GC模式,如果没有进行配置,那么应用程序总是默认为单CPU的工作站的并发模式,并且如果机器为单CPU的话,那么配置服务器模式则无效。 如果在工作站模式中想禁用并发模式,则应该在config中运行时节点添加
如果想更改至服务器模式,则可以添加
。 ```csharp
``` gcConcurrent: https://docs.microsoft.com/zh-cn/dotnet/framework/configure-apps/file-schema/runtime/gcconcurrent-element gcServer: https://docs.microsoft.com/zh-cn/dotnet/framework/configure-apps/file-schema/runtime/gcserver-element #### 性能建议 虽然我们可以选择适合的GC工作模式来改善垃圾回收时的表现,但在实际开发中我们更应该注意减少不必要的内存开销。 几个建议是,减换需要创建大量的临时变量的模式、考虑对象池、大对象使用懒加载、对固定容量的集合指定长度、注意字符串操作、注意高频率的隐式装箱操作、延迟查询、对于不需要面向对象特性的类用static、需要高性能操作的算法改用外部组件实现(p/invoke、com)、减少throw次数、注意匿名函数捕获的外部对象将延长生命周期、可以阅读GC相关运行时配置在高并发场景注意变换GC模式... 对于.NET中改善性能可延伸阅读 https://msdn.microsoft.com/zh-cn/library/ms973838.aspx 、 https://msdn.microsoft.com/library/ms973839.aspx
这里⇓感觉得写点什么,要不显得有点空,但还没想好写什么...
返回顶部
About
京ICP备13038605号
© 代码片段 2024